Kernel Eigenspace-based Mllr Adaptation Using Multiple Regression Classes

نویسندگان

  • Roger Hsiao
  • Brian Mak
چکیده

Recently, we have been investigating the application of kernel methods to improve the performance of eigenvoice-based adaptation methods by exploiting possible nonlinearity in their original working space. We proposed the kernel eigenvoice adaptation (KEV) in [1], and the kernel eigenspace-based MLLR adaptation (KEMLLR) in [2]. In KEMLLR, speaker-dependent MLLR transformation matrices are mapped to a kernel-induced high dimensional feature space, and kernel principal component analysis (KPCA) is used to derive a set of eigenmatrices in the feature space. A new speaker is then represented by a linear combination of the leading eigenmatrices. In this paper, we further improve KEMLLR by the use of multiple regression classes and the quasiNewton BFGS optimization algorithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving eigenspace-based MLLR adaptation by kernel PCA

Eigenspace-based MLLR (EMLLR) adaptation has been shown effective for fast speaker adaptation. It applies the basic idea of eigenvoice adaptation, and derives a small set of eigenmatrices using principal component analysis (PCA). The MLLR adaptation transformation of a new speaker is then a linear combination of the eigenmatrices. In this paper, we investigate the use of kernel PCA to find the ...

متن کامل

Fast speaker adaptation using eigenspace-based maximum likelihood linear regression

This paper presents an eigenspace-based fast speaker adaptation approach which can improve the modeling accuracy of the conventional maximum likelihood linear regression (MLLR) techniques when only very limited adaptation data is available. The proposed eigenspace-based MLLR approach was developed by introducing a priori knowledge analysis on the training speakers via PCA, so as to construct an...

متن کامل

Eigenspace-based Linear Transformation Approach for Rapid Speaker Adaptation

This paper presents our recent effort on the development of the eigenspace-based linear transformation approach for rapid speaker adaptation. The proposed approach toward prior density selection for the MAPLR framework was developed by introducing a priori knowledge analysis on the training speakers via probabilistic principal component analysis (PPCA), so as to construct an eigenspace for spea...

متن کامل

Robustness of several kernel-based fast adaptation methods on noisy LVCSR

We have been investigating the use of kernel methods to improve conventional linear adaptation algorithms for fast adaptation, when there are less than 10s of adaptation speech. On clean speech, we had shown that our new kernel-based adaptation methods, namely, embedded kernel eigenvoice (eKEV) and kernel eigenspace-based MLLR (KEMLLR) outperformed their linear counterparts. In this paper, we s...

متن کامل

Transformation Sharing Strategies for MLLR Speaker Adaptation

Transformation Sharing Strategies for MLLR Speaker Adaptation Arindam Mandal Chair of the Supervisory Committee: Professor Mari Ostendorf Electrical Engineering Maximum Likelihood Linear Regression (MLLR) estimates linear transformations of automatic speech recognition (ASR) parameters and has achieved significant performance improvements in speaker-independent ASR systems by adapting to target...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005